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Scalar fields and dynamics of the early universe 
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Abstract. A theory of a self-interacting scalar field and gravitation is discussed in the 
context of a Robertson-Walker metric. The calculations are efficiently reformulated using 
a metric compatible connection with torsion, although the relation to the Brans-Dicke 
theory is explicitly displayed. New exact solutions are derived and their relevance to 
recent cosmological models pointed out. 

1. introduction 

Model cosmologies are often described (Raychaudhuri 1979) in terms of homogeneous 
spaces containing simple configurations of matter parametrised in terms of pressure 
and material density. There has been some interest recently in cosmologies that 
develop in response to field equations involving scalar fields that interact with them- 
selves and gravitation. Such theories, for example, possess features that have proved 
of interest in discussing particle creation in the early universe (Parker 1978) and 
models in which the force of gravitation varies with the age of the cosmos. A number 
of non-static cosmological solutions have also been discussed (Raychaudhuri 1979, 
O’Hanlon and Tupper 1972, Blyth and Isham 1975) in the context of the Brans-Dicke 
scalar-tensor theory. 

In a recent paper (Dereli and Tucker 1982) we have indicated how the latter 
theory may be efficiently reformulated in terms of a metric compatible Lorentz group 
connection with torsion. By a local rescaling of the metric this reformulation also 
encompasses the Einstein-Klein-Gordon system. Furthermore the conformal proper- 
ties of the theory are much simplified in this reformulation. 

In this note we present a class of exact non-static solutions to such a theory when 
a certain scalar self-interaction is included. A similar interaction has featured in a 
number of recent articles (Davis and Unwin 1981, Ford and Toms 1982) that have 
discussed broken symmetries in the presence of a background gravitational field. 

Some of the solutions below might be interpreted as geometries in the vicinity of 
the original singularity that is supposed to have triggered the evolution of the universe. 
It is certainly of interest to examine the cosmic time dependence of the scalar 
self -interaction, particularly in view of the competing viewpoints concerning the 
existence of a ‘cosmological field’ (Davis and Unwin 1981, Christensen and Duff 
1980). 
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2. The model 

The theory under discussion is generated by varying the action four-form: 

h[e", Wab, CY]=4a2Rab A *(e" A e b )  -:c d a  A *da  -Aa4* 1 (1) 

with respect to the scalar field a, the metric compatible Lorentz group connection one- 
forms Wab = -Wba and the orthonormal tetrad e". We shall use throughout the language 
of the exterior calculus and further details of our conventions can be found in Dereli 
and Tucker (1982). Despite its appearance, for A = 0, this is equivalent to the original 
Brans-Dicke theory. The Brans-Dicke scalar is 4 = a2 and c = 40.1 + 6 .  The canonical 
Brans-Dicke action follows by solving for the connection Wab  from the equation 
obtained by varying (1) with respect to this connection: 

T, A *(e" A e b  A e') = -2(da/a)  A * (eb A e'). 

Rab=dW"b+Wac A W ' b  (3) 

(4) 

(2) 

In (1) and (2) the curvature Rab and torsion T" two-forms are defined by 

b T" =de"+wab he  

and the space-time metric tensor is 

g = qabeaOeb  ( 5 )  

with Tab = diag(-, +, +, +). * is the Hodge dual map defined with respect to this metric. 
The explicit solution for &Jab in terms of a and the torsion-free Christoffel connection 

&)ab is 

Wab=dabf(ib da/a)e,-(i ,  dff/U')eb ( 6 )  

where the contraction operators i,, a = 0, 1, 2, 3, are defined by i,(eb) = 6,b, 
In terms of &ab associated with &ab the action (1) reduces to 

(7) 
up to an exact form. In analysing the field equations we find it most advantageous 
to work from the action (1) rather than (7). Varying (1) with respect to ea, a and 
Wab in turn yields 

:a2Rb, *(e" A e b  A e') = 7" +Aa4*e" (8) 
aRab A *(e" A eb)  = -cd *da  +4Aa3* 1 (9) 

T" = e a  A (da / a )  (10) 

1 2 0  A[ea, a ]  = ~a Rab A * (e" A e b )  - 2 w  d a  A *da  - A c t 4 *  1 

where 7" = - :c (i" d a  A * d a  + d a  A i" * da) are the canonical stress three-forms of the 
scalar field and (10) is equivalent to (2). Multiplying (8) exteriorly by e, and comparing 
with (9) shows that we may replace (9) by the simple equation 

cd * d a 2  = 0. (11) 

Since (10) has the unique solution ( 6 )  we may regard (S), (11) and (6 )  as the basic 
form equations for the theory. It should be noted that the so-called 'improvement 
type term' of the Brans-Dicke theory has been assimilated into the curvature associated 
with the Lorentz connection that solves (10). Furthermore, the theory is locally scale 
invariant if c = 0, in which case, a is arbitrary (Dereli and Tucker 1982). 
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For c # 0, we seek cosmological solutions to the coupled field equations, corres- 

(12) 

ponding to a Robertson-Walker metric: 

g = -dtOdt+R2(t){dxOdx +S2(.y)[d60d6 +sin2 6 d4jOd4jI) 

and a scalar field a = a(t). A suitable tetrad would then be 

eo= dt e' = R(t) dx e*  = R(t)S(x) d6 e3 = R( t )S (x )  sin 6 dq5. (13) 

In terms of the new variables p, U and p defined as 

p = lnlRI U = 1n)SI p = InJcul 

the connection one-forms, (6), are 

wok = @ +C;)ek k = 1,2,3 

1 u ' 3  2 cot 6 3 
w 3 = - - e .  

RS 
w 3 = - - e  1 U le2  

R 0 2 = - -  R 

The associated curvature two-forms are 

R o k  = A ( t ) e o A e k  k = 1,2,3 

RI2 = B(t,  X)e' A e 2  R13 = B(t, x)e' A e 3  R23 = C(t, X)e2 A e 3  (16) 

where 

A =(i;+b)+p(b+C;) B = ( p  + r; )2 - e-" (Ur1 + d2) 

c = @ +C;)2-e-2P(ur2-e--2~ 1. (17) 

It is also of some interest to compute the Weyl curvature two-forms associated with 
W a b .  They are defined by 

(18) c a b  = Rab -$(e, A P b  - eb A Pa) + :ea A ebQ 

where 

P, = iab, Q = i,Pa 

and we find that 

Since the torsion vanishes for a constant a, the Riemann-Christoff el curvature forms 
Rab and the Weyl conformal curvatures c a b  associated with &ab are obtained from the 
above formulae by setting p to a constant. The vanishing qf the &ab implies the 
existence of a metric g' conformally related to g that has zero Rab. 

With the above ansatz the field equations (8) reduce to 

C + 2 B  =$ch2+A e2" 

C + 2 A  = -$cG2+A e2" 

B +2A = - % q . i 2 + A  e21L 
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and the scalar field equation, (1 l ) ,  to 

h+2fi2+3Pfi  = O .  

The latter may be integrated immediately to give 

,.i = constant. (25) 

Clearly (22) and (23) imply that B = C, so we can simplify (21), (22), (23) to the 
following: 

A = - iC, . i2+f~ e2w B = & - f i 2 + + ~  e’& C = B. (26) 

The last one yields 
+ e - 2 c  - - 0  

which upon integration implies 

($2 - = & E a constant. 

Consequently 
I2 d ’ + U  = E  

or in terms of S 

S’’ = 1 + E S 2 .  

This has three well known solutions. 

Type 1: s = sin(J-eX) for E < O  

Type 2: S = sinh(&X) for E > 0 

Type 3: s = x  for E = 0. 

Then for all E ,  c a b  = 
geometry may be said to be conformally flat. 

= 0 ,  even when (Y and hence p is not constant and the 

The remaining equations, (24) and (26), now reduce to 

~ + f i + b ( b + , . i ) = - $ ~ , . i ’ + $ ~  e’@ (31)  

for the two functions p ( f )  and p ( t ) .  
It is possible at this point to make contact with certain vacuum solutions (O’Hanlan 

and Tupper 1972) to Brans-Dicke theory with zero A. For example a type 3 solution 
( E  = 0) with A = 0 is 

p = p o + m l n t  (34) 

p = p O + n l n f  (35) 

where po and po are arbitrary constants and 

l / n  = -1 * (3c/2)’” 

m =$(1-2n).  (37) 

In this class c is an arbitrary positive constant. For p =plf and p = p l t  with p l ,  p1 
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constant there is another solution if p1 = $pl and c = $. These type 3 (A = 0) solutions 
coincide with those found in O’Hanlan and Tupper (1972). If the zero A condition 
is relaxed then we have for type 3 the de Sitter solution 

(38) 

a =(Yo (39) 

R( t )  = Ro exp[ f ($Aai)1’2t] 

with Ro, a. constants. 
The new solutions we find in the case when E # 0, A # 0 follow from the forms 

p = inlaot”l (40) 

p = InlRotml (41) 
where a. and Ro are constants. The equations (31), (32), (33) are consistent if 
m = -n = 1 and the constants a. and Ro are related to E, A and c by the conditions 

(YO’ = c/A (42) 

Ro’ = - 2 ~ 1 ~ .  (43) 
Then for c > 0 we must have E < 0 (type 1) and A > 0. For c < 0 then E > 0 (type 2) 
and A < 0. The type 1 configuration is usually regarded as referring to an action with 
physical scalar field. In this case if we change to the coordinate r = sin(d-EX) this 
solution may be written as 

g=-d rOdt+- r  ’ dr@tr+r2d i l@di l )  - 
c ( 1 - r  

a(r) = (c/A)1’2t-1 c > o  A > O .  (45) 
For such a solution A = 0, B = C = -&/Ro2t2 and an invariant characterisation of the 
curvature is 

Rab * R ab = ;(c2/t4) * 1. (46) 

3. Conclusions 

We have analysed a formulation of a self-coupled scalar interacting with gravity in 
terms of a non-Christoffel although metric compatible connection. In the absence of 
the self-interaction the theory may be related to either Brans-Dicke or Einstein-Klein- 
Gordon. When A # 0 the action resembles a class of background Aa4 theories (Davis 
and Unwin 1981, Ford and Toms 1982) that have been investigated in curved 
space-time in the context of dynamical symmetry breaking. Indeed it may be of some 
interest to reinterpret such theories without assuming that gravity should be incorpor- 
ated by adding to (7) the Einstein action. Our solutions (44) and (45) show that 
certain Robertson-Walker metrics solve the equations based on the action (7) exactly 
without an additional curvature term. 

For .A = 0 the equivalence to the Brans-Dicke theory has been explicitly verified 
by recovering a class of known vacuum solutions. For A # 0, new solutions have been 
derived including a Robertson-Walker universe with the topology R x S 3 .  It is 
interesting to observe that for these solutions the scalar self-coupling Aa4* 1 in the 
action decreases as an inverse power of the cosmic time r. 
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